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Abstract

The purpose of this note is to define tri-momentum maps for certain manifolds v8iiBri-action.
We exhibit many interesting examples of such spaces using quaternions. We show how these maps
can be used to reduce such manifolds to ones with fewer symmetries. The images of such maps
for quaternionic flag manifolds, which are defined using the Dieudonné determinant, resemble the
polytopes from the complex case. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A closed form on a manifold can be used to gather information about its geometry [10].
In particular, when a manifold is equipped with a closed non-degenerate twaxfotine
manifold can be effectively studied by the methods of symplectic geometry. If, in addition, a
Lie group acts on the manifold in a hamiltonian fashion, the Marsden—Weinstein reduction
allows one to reduce the system to another one with fewer degrees of freedom.

Higher order closed differential forms with properties similar to the symplectic structures
(e.g. zero characteristic distribution) are called multisymplectic forms and have important
applications to field theories, like in Tulczyjew [34], Marsden et al. [25], Cantrijn et al. [2],
and other works.

In this paper we concentrate on four-forms, and our main spaces of interest are quater-
nionic vector spaces and quaternionic flag manifolds. The main reason is that these spaces
carry natural interesting group actions, and appear quite naturally in many different in-
stances. For example, quaternionic flag manifolds can be realizBd@sorbits on the
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space of quaternionic hermitian matrices. We show that these spaces carry natural closed
non-degenerate invariant four-forms.

Ourresults are related to Yang—Mills theory. On quaternionic Kéhler manifolds, Taniguchi
[33] has established expliait® neighbourhoods of the minimal Yang—Mills fields, which
contain no other Yang Mills fields up to gauge equivalence. The quaternionic Yang—Mills
connectionsV are those that satisfiy(FY A ¥) = 0, wherey is a four-forms
as above.

In general, ifX is an oriented #-dimensional manifold equipped with a closed, non-
degenerate four-formg, then we call( X, i) atetraplecticmanifold. If, in addition,X is
equipped with &p(1)" action satisfying certain properties (see Section 3), we can define
atri-momentum mafrom X to (A3s*)", wheres = sp,. Under certain conditions, we can
reduce the original manifol& to another manifold, which also possesses a tetraplectic
structure. This procedure is quite different from the Hyper—Kahler reduction of Hitchin
et al. [18] and the quaternionic reduction defined by Galicki and Lawson [14], since our
target space is different.

We show how our procedure can be applied to the case Whsra quaternionic vector
space or a (full or partial) quaternionic flag manifold. In particular, in the latter case, the
images of the tri-momentum maps resemble the momentum map polytops for the torus
actions on the complex flag manifolds. The coordinate expressions for the tri-momentum
maps for the quaternionic flag manifolds can be obtained using the Dieudonné determinant
[6].

In Section 5 of the paper we discuss some related developments.

2. Tetraplectic structures

Definition 2.1. Let X be a real manifold of dimensiomdand letyr be a four-forms orX
satisfying the following two conditions.

1. The formy is closed: @y = 0.
2. The 4n-form ™ is the volume form orX.

If these two conditions are satisfied, we aglh tetraplectic structure ok, and(X, v)
a tetraplectic manifold.

One of the properties af, that is an immediate consequence of the definition, is that the
induced maps

Uy T X — A3TFX,
V> iy

have trivial kernels. One finds a large class of examples of tetraplectic structures given by the
symplectic manifolds. It X, ) is a 4n-dimensional symplectic manifold, thgn= o A w

is a tetraplectic structure axi. However, this class of manifolds will be of little interest to

us, since such manifolds can be effectively treated by the methods of symplectic geometry.
More interesting examples that we have in mind include guaternionic vector fi&ces
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full and partial quaternionic flag manifolds, and manifolds witkf)”-action. Many of the
manifolds in these examples do not allow symplectic structures.

ExampleThe first and basic example that we have in mind is the sjaeeH™. If we
identify this space witlR*" in the usual way, the standard tetraplectic fopnis defined
by

n
Y= Z dxg;—3 A dxgi_p A dxgi—1 A dxg;,
i=1

wherexy, . .., x4 is the coordinate system @f"”. The usual identification betwedfi"
with coordinateggx, . . ., ¢.») andR*" is given by

qi = X4i -3 +ix4i -2+ jxai—1+kxy;.

We note that the forny is not the square of a symplectic form BA” for m > 1, because
the square of a symplectic form would induce isomorphisfig, X ~ A2T; X, obtained
by contraction. However, in our case, when > 1, one can easily see that there will
be a non-trivial kernel at any point. Therefore, a naive attempt to obtain local Darboux
coordinates for every tetraplectic structure fails. Later we will discuss a certain condition
ony which will help to get a canonical local form. We would like to mention in this regard
that in [2], the authors describe certain canonical models of multisymplectic structures.
Example.The first important compact example of a tetraplectic structure is given by
the four-spheres®, which can also be viewed as the quaternionic projective line. The
tetraplectic formy on $4 is just a volume form. Under the identification wiliiP? ~
Sp(2)/(Sp(1) x Sp(l)), we can choose aBp(2)-invariant volume form. For example, if we
represens* asH plus the North pole, such a form would be given by

I 1
L+ 1g1%?

where we identifyH* with R, x Sp(1), and let|q| be the absolute value qf ¢ H ands2

an invariant volume three-form dd(1). (We will always viewSp(1) as the group of unit
length quaternions.) Notice th&t allows neither a complex nor a symplectic structure. We
also obtain a natur@p1) x Sp(1) action onHP* coming from the naturép(1) x Sp(1)
action onH?.

Example.Let us recall the large class of quaternionic Kéhler manifolds, which are
4m-dimensional Riemannian manifolds with the holonomy group a subgro@mej x
Sp(l). It was shown by Kraines [21] that all quaternionic Kéhler manifolds are tetraplec-
tic. However, this class does not exhaust our interest, because only quaternionic projec-
tive spaces are quaternionic Kahler, and not grassmannians or general flag manifolds.
An interested reader should consult a beautiful survey by Salamon [29] and references
therein.

Example A particularly large class of four-dimensional tetraplectic manifolds is given
by the Kulkarni four-folds [23], which come naturally endowed with a canonical conformal
class of locally conformally flat metrics [35]. One can view these four-folds as quaternionic
analogues of Riemann surfaces. These manifolds with their volume forms play an important
role in the four-dimensional conformal field theory.

v dig|$2,
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Definition 2.2. A spheroid X" is the n-fold product ofSp1) ~ 2, viewed as a Lie
group.

The Lie algebra,, of X" is the direct sum of copies ofs = sp;—the maximal compact
subalgebra of((1, H). The Lie algebra can be identified witho(3) and withR2, where
the Lie bracket is the cross-product of two vectors (the vector product).

There are natural actions of spheroidsithand other interesting spaces. This will be
our main motivation for Section 3.

3. Tri-momentum maps and reduction

Let X be a 42-manifold equipped with a tetraplectic structure given by a four-fogms
Leta spheroid~” act onX preserving the forng- (by tetraplectomorphisms). The stabilizer
of a pointx € X is not necessarily a spheroid. For example, if one considers the product
$2 x R?, and the action o£1 via SQ(3) on the first factor, then there exists a volume form,
which is not changed by this action, and a stabilizer of a point is a circle. All our further
examples will be such that the stabilizer of are actually spheroids, and we will tacitly bear
in mind this assumption for the general discussion as well.

If X acts on(X, ¥) as above, then we have a canonical map

o — I'(X,TX

sending an elemet of o to a vector fieldZ on X. Then we also have the map— A3(X)
given byZ i . If athree-form given byy v, wherey is a vector field or¥, is closed,
then we cally alocally hamiltonian vector fieldf, in addition,iy is exact, then we call
Y simply ahamiltonian vector fieldHere, one can speculate that the gréif X, R) can
be viewed as a certain topological obstruction.

Consider the four-vector fiefdon X uniquely defined byt v = ¥, Thisfour-vector
field defines aquaternary operation, -, -} onC*°(X) in astandard fashion. Ifthe Schouten
bracket of¢ with itself happens to vanish (which is the case for all our applications), then
we get a generalized Poisson algebra structur€®iaX) in the terminology of [4]. In the
same source, as well as in [19], the authors consider triples of fungtionis, f3 € C*°(X)
and the corresponding hamiltonian vector fields given by

Yi o =1(df1 Adf2 Adf3)E.

Then the corresponding evolution equation for gny C°°(X) is given by

g =1{r1, f2, f3, &}

We say that¥ acts onX in a (generalized) hamiltonian way if each of the generating
vector fields for the action is hamiltonian. The dual vector space to the Lie alggbra
is isomorphic to the product of copies ofs*. The action ofX” on X induces a map
(A3s)" — I'(X, A3TX) by taking the third exterior power of the the above morphism for
each component; and adding these up.
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Definition 3.1. Let X" act on(X, v) in a generalized hamiltonian way. A tri-momentum
mapu is a map

wi X — (A3 ~ R"
satisfying the following conditions.

1. wis X™-invariant:u(a - x) = u(x), fora e X".
2. Foranys € (A3s)" we have

d(u(x). 8) = iz,

wherex € X, ands is the tri-vector field orX induced bys.
3. Foranyx € X, such thau(x) is regular, KefT, i = (A30 - x)+ with respect tay,.

Notice that the first statement in the above definition is equivalent to saying:thsat
X>"-equivariant, because the co-adjoint actior®dfon s* induces the trivial action of*
on A3s*.

We will always identify(A3s*)" with R” unless it leads to confusion. The following is
an example of a tri-momentum map. Other examples will be treated later on.

Example.Let X = (H", ¥) as in Section 2 with the standard spheroid action. The

tri-momentum mafil” — R” is given by

@1 - qn) = (qul*, - lgal™.

The level sets for this tri-momentum map are isomorphic to the products of three-spheres.
ExampleLet us takeX = H? and the diagonal action afe £ on (g1, ¢2) € H? given
by (a-q1, a-¢2). Then the tri-momentum mdfi* — Ris given by(g1, g2) — |q1]*+1g2|*.
The regular level sets for this tri-momentum map are isomorphic to seven-spheres.
Now we would like to define the procedure of reduction in the general setup of tri-
momentum maps. Let = (x1, ..., x,) € R" be a regular point of a tri-momentum map
w: (X, ¥) — R" as above. The level st := n~1(x) is smooth and~”-invariant. The
stabilizers of the points i, C X form a group bundle over it, which we assume to be
smooth. Then the reduced spdGe:= Z, /X" is well defined and is a smooth manifold.
Let us also assume that is horizontalon Z,, meaning that for any € o,, and the
corresponding vector field on Z,, one hafiﬁl/qzx = 0 (one can easily see that a priori,
the four-forms on the level sets need not necessarily be horizontal). By methods similar to
those used for the symplectic reduction [26], we prove the following.

Theorem 3.1. Letx € R”" be aregular value of a tri-momentum map X — R". Assume
that the stabilizers of all points i, form a smooth spheroid bundle ov&g, and thaty it
is horizontal onZ,. Then the reduced spadg = X//X" corresponding ta is a smooth
manifold admitting a tetraplectic structurg,, which is reduced frong .

Proof. The tetraplectic structurg¢ on X induces a totally anti-symmetric four-linear form
on each of the spacdsZ,/T,(X.z). This form is well defined due to the invariance and
horizontality of the form)r. Therefore, we have a global four fonfiy on the reduced space
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Yx. Now let us show that for any € Yy, the induced maf@, Y, — A3T;Yx has trivial
kernel. It is enough to work with the casemot 1, i.e. theSp(1)-action. Since the actions
of different summands commute, and are hamiltonian, the reduction can be performed
one step at a time. In this case, one can choose a non-zero eleméest imhich would
define a Bott—Morse functiofi(z) on the manifoldX satisfying df = «, wherew is the
one-form, obtained by contracting the generating tri-vector field(dior the 1 action
with . According to our definitiong is the generating one-form for the codimension one
foliation determined byf (which is regular, locally near the regular level sets). Therefore,
we can represent the volume fori* as the product l A 8 A £2, whereg is an invariant
three-form, which pairs non-trivially with the fundamental three-vector field,sarid an
invariant (4m — 4)-form, which reduces td, and is the highest exterior power of the
tetraplectic formy,. O

Example We leave the majority of examples for the subsequent sections, and consider
only the two examples that we had earlier in this section.

In the first example, wheK = H" with the standard tetraplectic forgnand the standard
X" action, the reduced spaces are just points.

In a slight modification of our second example, }et= H? with the standard diagonal
>1 action, and let the four-formg be given by

¥ =d(lg11* — 1921 A d(a1 — a2) A d(B1 — B2) Ad(y1 — y2),

where(q1, ¢2) € H2, andg; has the absolute valye;| and the spherical patt:;, i, v;).

The reduced space in this example is isomorphit#d ~ $*, and topologically we have

the Hopf fibrations® — S§7 — $*. The reduced tetraplectic structure HiP! is just

the invariant volume form discussed in Section 2. Similarly, one can obtain an invariant
tetraplectic structure ofP" for an arbitraryn.

We would like to reiterate that the reduction procedure described above is different from
the Hyper—Kéhler reduction [18]and quaternionic reduction [14]. The group that acts in our
situation isSp(1)” and the target for the momentum map involves third exterior powers of
the Lie algebra summands. Whereas, for example in [14], the groups maybe different, but
the momentum mapping is bundle valued.

We remark that one can obtain focal sets fgedCP" (critical sets for of the normal
exponential map with respect to the totally geodesic submarfifildc HP") as zero level
sets of a particular momentum map as in Ornea and Piccinni [27]. It would be interesting to
see if one can obtain new examples of Sasakian—Einstein structures using our tri-momentum
maps.

4. Quaternionic flag manifolds

In this section, we show that the classical constructions of (full and partial) complex flag
manifolds can be used to construct quaternionic flag manifolds using the reduction procedure
thatwe discussed in Section 3. Moreover, we show that the reductions of these spaces possess
natural invariant tetraplectic structures. et= GL(n, H) andB be the subgroup of upper
triangular matrices. One has a natural identification between the full flag matifotet
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Spn)/ X" andG/ B similar to the complex case. We also consider the partial flag manifolds

Fiy...i; = Spn)/(Spi1) x --- x SWi;)), wheren = i1 +--- +i;, where for example,

we have the quaternionic grassmanniangpGr — p) = Spn)/(Sp(p) x Spn — p))

appearing as conjugacy classes in the classical compact mup They are the orbits

ofthe elementsdiad, ... 1, —1, ..., —1), whenSpn) is considered as a matrix subgroup
——— —

P n—p
of G. The advantage of our approach is that although the lack of determinants over skew
fields does not allow one to use the Pliicker determinants for the quaternionic flags, the
tri-momentums maps still exist and have certain nice properties which we will exhibit.

Let us consider the spadg, of quaternionicn x n hermitian matrices, defined as a
subspace af x n quaternionic matricegl, (H) by the conditiorA = A*, whereA* stands
for the transposed quaternionic conjugate matrix. The g&uip) acts by conjugation on
‘H, and the orbits of the action are isomorphic to quaternionic flag manifolds.

The cell decomposition enumerated by the Schubert symbols work&loaemell as it
does ovefC [8]. One can also use an identificationid with R** and embed quaternionic
flag manifolds into the real ones in order to construct a non-degenerate Morse function on
Fiy....i;, essentially done in [28].

A very interesting question related to the spat,ewas discussed by Fulton [13]. It turns
out that the equatiod; + - - - + A, = C, where the matrices have prescribed spectra, has
a solution in quaternionic hermitian matrices if and only if it has a solution in complex
hermitian matrices.

First of all, we notice that the grassmannian(@m — p) can be realized as follows.
Consider the spadd"P of n x p matrices with quaternionic entries, and let the subspace
V c H"P consist of those matrices whose rows are orthonormal with respect to the standard
pairing:

&)= &,
i=1

where the bar stands for the quaternionic conjugation. The gdp(p acts on such bases
preservingV, on which it acts freely. The quotient space is isomorphic to the quaternionic
grassmannian Gp, n — p). We claim that there exists a tetraplectic fomon H"P, that

can be pulled back t&. The resulting four-forms oV will be preserved by the action

of Sp(p) and horizontal, and thus, will descend to the quotientpGe — p). This would
endow the irreducible symmetric space(@rn — p) with a tetraplectic structure.

More generally, we can extend the construction of Guillemin and Sternberg [16] for the
complex flags. Since the full flag projects to all partial flags, and this projection behaves
well with the respect to the group action, a tetraplectic structure on the full flag manifold,
F,, would push down to the partial flags.

Let K = Spn) and letX" be its maximal spheroid as defined in Section 2. We have a
principal fibrationk — F,, with fiber X". We need the following projection map:

u2 K xR" - R,

kxxmH x.
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Here, we identified for conveniend®® with (A3s*)" (see Section 3). The map; is the
projection to the second factor, where we tige= s @ - - - @ s to take third exterior powers

n
of individual summands. The principal bundte— F,, admits an invariant bundle-valued
three form$, from which we obtain a pre-tetraplectic four-forms:

Y1 =d (8, u2)

on K x R" (cf. minimal coupling [32]).

Following the strategy of [16] we can show that the foym is actually tetraplectic,
when we restrict to the proper subspakof R" (using the above identification we can
actually letR? = (R;)"). We call this restrictiony. Now the mapu, which we callu
after restricting it tok x Rf, has all the properties of a tri-momentum map from Section
3. For ageneri¢ € (R4)" Cc R, itis clear that¥” stabilizess. Therefore, we obtain the
following result.

Proposition 4.1. The action of£” on K x Rfj, whereX" acts trivially on the second factor
has the tri-momentum map The reduced space is isomorphidig the full quaternionic
flag manifold. The reduced tetraplectic form Bj so obtained i -invariant

Let us outline the relationship of the four-formison the quaternionic flag manifolds that
we have obtained with invariant symplectic structures on athlomogeneous spaces. Let
T be a maximal torus ik contained inX” and let7; ~ S be a maximal torus in thih
component of2”, so thatl’ = Ty x --- x T,,. We have the following fibration:

=zt Spn)
H(Tl>—> T — F,.

i=1

Each factorz'!/7; is isomorphic toCP! and carries ark L-invariant symplectic form;,

while the spac&pn)/ T is the classical flag manifold isomorphic $m(z, C) modulo its

Borel subgroup, and thus, carriekainvariant symplectic forna (actually, this form can

be obtained, once one identifi&y T with a co-adjoint orbit and uses the Kirillov—Kostant—
Souriau (KKS) structure on the later). Trivially, by choosing a fiber, we can assume that all
thew; are the pull-backs of the form. The spectral sequence for this fiber bundle clearly
shows that, cohomologically, one can choose sudriavariant tetraplectic structurg

on F, that it will correspond to the cohomology class ®fA w. Moreover, due to the
K-invariance of the aforementioned, this correspondence can be traced on the level of
forms.

At this point, we would like to construct canonical four-forms on all the orbitSmf)
action on#,,. These orbits, as we mentioned earlier, are isomorphic to quaternionic flag
manifolds. These forms have similar origins and properties to the KKS symplectic forms
on the coadjoint orbits of the group(n). First of all, let us define a four-commutator of
square matrices:

[A1, A2, A3, Ag] = ) SIgN(D)Ar 1) Ar2)Ar3) Ar@)-

T€S84
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This four-commutator has the following property with respect to the usual commutator:

> (DAL A Ax, A A As] =0 (4.1)

1<i<j<5

We also notice that the four-commutator of four quaternionic hermitian matrices is again
such, so we have an operati®f* — H,. Let us also recall the non-degenerate pairing
H, x H, — R given by the real part of the trace of the produat; B) — Re Ti(AB).

This pairing is invariant with respect t& = Spn) action. This allows us to identify the
tangent and co-tangent space to any elemert H, with #,. The four-vector fieldc

on H,, defined via the above four-vector field is parallel to the orbits. The corresponding
four-formsy on an orbit®, whose value af € O C H, is given by

has the following properties.
Proposition 4.2. The four-forms) is non-degeneratelosed and Sgn)-invariant

Proof. The invariance is a direct consequence of the fact that the real part of the trace
of the product of two quaternionic matrices is conjugation invariant. Non-degeneracy is
easy to check at one point of the orbit, namely, the diagonal matrix. Then one can use
the invariance to show non-degeneracy on the whole orbit. To show/tigtlosed, we

will follow discussion on p. 229 of [20]. We will identify the orb@® with K /L, whereL
stabilizesy, and use the fact tha -invariant four-forms onk' /L correspond uniquely to
L-invariant elements in*(11), where the differential is given by the formula:

1 i .
do (X1, ..., Xs) = EZZ(_D (X, X1 X X ).
<J

Therefore, the closedness immediately follows from our formula (4.1). O

Thus, we have shown that the quaternionic flag manifolds, which app&agsorbits
in H,,, are naturally tetraplectié.

Now we will discuss some general properties of the momentum polytopes and we will
see how the classical polytopes for the Hamiltonian torus actions on complex flag manifolds
fit into the quaternionic picture. The group = (H*)" acts onH" and this action induces,
in turn, an action off on the spaces such &s and Gip, n — p). The maximal spheroid
X" is always thought of as the maximal compact subgroufd of

Recall the Dieudonné determinant [6]:

D : GL(n, H) — R4,

which is defined using the transformation of a matrix to an upper-triangular form.
For example, whem = 1, D(g) = |q|, the usual norm. For anpy € GL(n, H) of

11 was informed that Reyer Sjamaar and Yi Lin have a different construction of tetraplectic four-forms on
guaternionic flag manifolds, using natural Lie algebra valued differential forms and tautological vector bundles.



P. Foth/ Journal of Geometry and Physics 41 (2002) 330-343 339

the form:

q1 H
0 B/’

whereH is any row vector of lengtkin — 1), andB is an(n — 1) x (n — 1) matrix from
GL(n — 1, H), the Dieudonné determinant dfis given by

D(A) = |qa| - D(B).

Among the properties of the Dieudonné determinant are many of the usual proper-
ties of the determinant in the groupL(n) over a commutative field. We will use the
Dieudonné determinan® to construct a tri-momentum map for the quaternionic grass-
mannians Gfp, n — p).

First of all, it is well known that the combinatorics of the (partial) flag manifolds in the
quaternionic case is the same as in the complex case. Moreover, the cohomology rings are
isomorphic (with the appropriate change in grading), and the Shubert calculus works the
same.

Letusfirsttreatthe case of the quaternionic grassmarianGr(p, n— p). We choose a
K -invariant tetraplectic four-formg on X, which is really only defined up to multiplication
by a scalar. The spherol” acts onX in a tetraplectomorphic way preservitgig We claim
that the image of the tri-momentum map is the same as in the complex case, i.e. can be
identified with the polytopeZ’, in R" defined by

Z,={0<x; <Lxi+-+x, = pl

where(x1, ..., x,) are the coordinates iR". One of the ways of looking at the coordinates
x1, ..., X, is that of viewing them as the hamiltonians for the actions of the summands
of X", and we claim that the three-vector field determined by théth summand in
I =@, ¥, satisfies d; = is .

Now the construction of the coordinate functigron Gr(p, n — p) is not really different
from the complex case. Any quaterniopplanelT in H" can be viewed as anx p matrix
M of rank p with quaternionic entries. Following [15], lgtbe a subset oL, . .., n} of
cardinalityp. By M7 (J) we understand the x p matrix with quaternionic entries obtained
from M by keeping only those rows that are numbered by the elements\oéke further
define:

Y ic; DM (D))
>, DXMp(J))

We note that these Dieudonné determinants and their properties are of a crucial use in the
quaternionic case.

xi(IT) =

Proposition 4.3. The coordinate$x;} give a tri-momentum map
u:Gr(p,n—p)—> R",

The image of this map is the convex polyt@jeC R". The vertices of the polytop& are
the points inGr(p, n — p) fixed under thez”-action. IfIT is a point inGr(p, n — p), then
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the image of the closure of the orhit X.1T) is the convex hull of the images of the fixed
points inX.IT.

Proof. The main idea is to choose an identification betweewGt — p) and an orbit
of Spin) in H,, say of the element digg, ..., 0, 1,...,1). For exampleHP! can be
— ——

n—p P
identified with an orbit ofSp(2) of diag(0, 1). The element of this orbit of the form

-1
51 82 0 0 51 82 . 522 5254
53 S4 01 53 84 -~ \sas2 1sal? )’

where the first matrix is fron®p(2), and the second fror{o, corresponds tosp : s4]

€ HP. On the other hand, a poifitP* can be represented as a linéiA passing through a
point (g1, g2). There are certain formulas relating, ¢ with s1, s3, which can be obtained

by a straightforward computation. Analogous considerations are valid for gl,Gr—

p). One the orbit side, the momentum map will simply be given by the projection to the
diagonal. O

Similarly, one can obtain statements about full and all partial quaternionic flag manifolds
that are analogous to the complex case.

5. Related developments

In this section, we will merely outline the content of two subsequent papers [12] and [11].
In [12], we show several important generalizations of the classical results from symplectic
geometry to the case of tetraplectic geometry. The first is the convexity theorem founded in
[1]and [17]. Basically, we establish the following fact. l(ét, 1) be a tetraplectic manifold
and letX" act onX in a tetraplectomorphic way. Létf1, ..., f,) be such functions on
X that the flow corresponding to the generalized hamiltonian three-vector figlds, §,
(defined byis; v = df;) generated a subgroup of Diff) defined byX". Then the image
of the mapu : X — R" given by

@) = (f1(x), ..., fa(x))

is the convex hull of the images of connected components of the set of common critical
points of f;.

Another direction that we pursued [12] is a generalization of the Duistermaat—Heckman
theorems [7]. For the case of quaternionic flag manifolds and certain other compact mani-
folds with (H*)" action, this formula would help to recover the structure of the cohomology
ring of the reduced spaces from the combinatorics of the fixed point data combined with
a generalization of Duistermaat—Heckman by methods similar to Guillemin and Sternberg
[16].

In [11], we work with generalized Poisson structures (GPS) of rank 4 as defined by de
Ascarraga et al. [4]. We show that many familiar manifolds have natural GPS. In particular,
we show that the full quaternionic flag manifolés (as well as all the partial ones) have
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interesting natural GPS. In particular, we give a Lie theoretic construction of the Bruhat
four-vector field onf;,,, which is an example of GPS. Recall that the classical Bruhat Poisson
structures on complex flag manifolds that were first introduced by Soibelman [30] and inde-
pendently by Lu and Weinstein [24]. One of their main properties is that that the symplectic
leaf decomposition yields exactly the Bruhat cells. Moreover, Evens and Lu [9] showed that
the Kostant harmonic forms [22] have Poisson harmonic nature with respect to the Bruhat
Poisson structure. It would be interesting to find a basis in cohomolody*¢f;,) dual
to the natural Bruhat cell decomposition for quaternionic flag maniféldehat is repre-
sented by forms with properties similar to Kostant harmonic forms. In particular, establish
a relationship with the Bruhat four-vector field of [11]. It would also appear quite natural to
consider the equivariant cohomology with the respect to the natural spheroid actign on

We also plan to study analogues of other interesting facts from the complex geometry,
which can be adapted to the quaternionic case. Examples include the Gelfand—MacPherson
correspondence between GIT and symplectic quotients of grassmannians and products
of projective spaces, the Gelfand—Tsetlin coordinates on the space of hermitian matrices,
moduli spaces of quaternionic vector bundles, and others.

5.1. Manifolds with(IH*)"-action

One could be tempted to use the theory of the toric manifolds to study the manifolds with
an(H*)" action with a dense open orbit. In particular, one can start with a convex polytope
in R™ and try to construct asddimensional manifold with afiH*)" action that has a dense
open orbit such that the tri-momentum map for the correspongih@ction is that convex
polytope. We do not know if this is possible in general except the simplest situation, when
the polytope is the standard simplex&f. In this case, the corresponding manifoldiB” .

A naive application of the usual reduction method of constructing such manifolds fails in
general due to the non-commutative natur&df However, there are examples of classes of
manifolds on whicHH*)" acts with a dense open orbit and we believe that one can classify
those by methods similar to [3] and [5]. Scott [31] develops a theory of quaternionic toric
manifolds, using topological methods. In general, only a single coyd$ acts on those.

If we only assume thdfl* acts on a manifold, then in certain cases one can obtain a cell
decomposition oX similar to the Bialynicki—Birula decomposition in the complex case.
Examples of such spaces are given by the quaternionic flag manifolds.
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