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Abstract

The purpose of this note is to define tri-momentum maps for certain manifolds with anSp(1)n-action.
We exhibit many interesting examples of such spaces using quaternions. We show how these maps
can be used to reduce such manifolds to ones with fewer symmetries. The images of such maps
for quaternionic flag manifolds, which are defined using the Dieudonné determinant, resemble the
polytopes from the complex case. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A closed form on a manifold can be used to gather information about its geometry [10].
In particular, when a manifold is equipped with a closed non-degenerate two-formω, the
manifold can be effectively studied by the methods of symplectic geometry. If, in addition, a
Lie group acts on the manifold in a hamiltonian fashion, the Marsden–Weinstein reduction
allows one to reduce the system to another one with fewer degrees of freedom.

Higher order closed differential forms with properties similar to the symplectic structures
(e.g. zero characteristic distribution) are called multisymplectic forms and have important
applications to field theories, like in Tulczyjew [34], Marsden et al. [25], Cantrijn et al. [2],
and other works.

In this paper we concentrate on four-forms, and our main spaces of interest are quater-
nionic vector spaces and quaternionic flag manifolds. The main reason is that these spaces
carry natural interesting group actions, and appear quite naturally in many different in-
stances. For example, quaternionic flag manifolds can be realized asSp(n)-orbits on the
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space of quaternionic hermitian matrices. We show that these spaces carry natural closed
non-degenerate invariant four-forms.

Our results are related to Yang–Mills theory. On quaternionic Kähler manifolds, Taniguchi
[33] has established explicitC0 neighbourhoods of the minimal Yang–Mills fields, which
contain no other Yang Mills fields up to gauge equivalence. The quaternionic Yang–Mills
connections∇ are those that satisfyd∇(F∇ ∧ ψ) = 0, whereψ is a four-forms
as above.

In general, ifX is an oriented 4m-dimensional manifold equipped with a closed, non-
degenerate four-formsψ , then we call(X,ψ) a tetraplecticmanifold. If, in addition,X is
equipped with aSp(1)n action satisfying certain properties (see Section 3), we can define
a tri-momentum mapfromX to (∧3s∗)n, wheres = sp1. Under certain conditions, we can
reduce the original manifoldX to another manifold, which also possesses a tetraplectic
structure. This procedure is quite different from the Hyper–Kähler reduction of Hitchin
et al. [18] and the quaternionic reduction defined by Galicki and Lawson [14], since our
target space is different.

We show how our procedure can be applied to the case whenX is a quaternionic vector
space or a (full or partial) quaternionic flag manifold. In particular, in the latter case, the
images of the tri-momentum maps resemble the momentum map polytops for the torus
actions on the complex flag manifolds. The coordinate expressions for the tri-momentum
maps for the quaternionic flag manifolds can be obtained using the Dieudonné determinant
[6].

In Section 5 of the paper we discuss some related developments.

2. Tetraplectic structures

Definition 2.1. LetX be a real manifold of dimension 4m and letψ be a four-forms onX
satisfying the following two conditions.

1. The formψ is closed: dψ = 0.
2. The 4m-formψm is the volume form onX.

If these two conditions are satisfied, we callψ a tetraplectic structure onX, and(X,ψ)
a tetraplectic manifold.

One of the properties ofψ , that is an immediate consequence of the definition, is that the
induced maps

ψ̃x : TxX → ∧3T ∗
x X,

v �→ ivψx

have trivial kernels. One finds a large class of examples of tetraplectic structures given by the
symplectic manifolds. If(X, ω) is a 4m-dimensional symplectic manifold, thenψ = ω∧ω

is a tetraplectic structure onX. However, this class of manifolds will be of little interest to
us, since such manifolds can be effectively treated by the methods of symplectic geometry.
More interesting examples that we have in mind include quaternionic vector spacesH

m,
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full and partial quaternionic flag manifolds, and manifolds with(H∗)n-action. Many of the
manifolds in these examples do not allow symplectic structures.

Example.The first and basic example that we have in mind is the spaceX = Hm. If we
identify this space withR4m in the usual way, the standard tetraplectic formψ is defined
by

ψ =
n∑

i=1

dx4i−3 ∧ dx4i−2 ∧ dx4i−1 ∧ dx4i ,

wherex1, . . . , x4m is the coordinate system onR4m. The usual identification betweenHm

with coordinates(q1, . . . , qm) andR4m is given by

qi = x4i−3 + iiix4i−2 + jjjx4i−1 + kkkx4i .

We note that the formψ is not the square of a symplectic form onR4m for m > 1, because
the square of a symplectic form would induce isomorphisms∧2TxX 
 ∧2T ∗

x X, obtained
by contraction. However, in our case, whenm > 1, one can easily see that there will
be a non-trivial kernel at any point. Therefore, a naive attempt to obtain local Darboux
coordinates for every tetraplectic structure fails. Later we will discuss a certain condition
onψ which will help to get a canonical local form. We would like to mention in this regard
that in [2], the authors describe certain canonical models of multisymplectic structures.

Example.The first important compact example of a tetraplectic structure is given by
the four-sphereS4, which can also be viewed as the quaternionic projective line. The
tetraplectic formψ on S4 is just a volume form. Under the identification withHP1 

Sp(2)/(Sp(1)× Sp(1)), we can choose anSp(2)-invariant volume form. For example, if we
representS4 asH plus the North pole, such a form would be given by

ψ = |q|3
(1 + |q|4)2 d|q|Ω,

where we identifyH∗ with R+ × Sp(1), and let|q| be the absolute value ofq ∈ H andΩ
an invariant volume three-form onSp(1). (We will always viewSp(1) as the group of unit
length quaternions.) Notice thatS4 allows neither a complex nor a symplectic structure. We
also obtain a naturalSp(1) × Sp(1) action onHP1 coming from the naturalSp(1) × Sp(1)
action onH2.

Example.Let us recall the large class of quaternionic Kähler manifolds, which are
4m-dimensional Riemannian manifolds with the holonomy group a subgroup ofSp(n) ×
Sp(1). It was shown by Kraines [21] that all quaternionic Kähler manifolds are tetraplec-
tic. However, this class does not exhaust our interest, because only quaternionic projec-
tive spaces are quaternionic Kähler, and not grassmannians or general flag manifolds.
An interested reader should consult a beautiful survey by Salamon [29] and references
therein.

Example.A particularly large class of four-dimensional tetraplectic manifolds is given
by the Kulkarni four-folds [23], which come naturally endowed with a canonical conformal
class of locally conformally flat metrics [35]. One can view these four-folds as quaternionic
analogues of Riemann surfaces. These manifolds with their volume forms play an important
role in the four-dimensional conformal field theory.
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Definition 2.2. A spheroidΣn is the n-fold product ofSp(1) 
 S3, viewed as a Lie
group.

The Lie algebraσn ofΣn is the direct sum ofn copies ofs = sp1—the maximal compact
subalgebra ofgl(1,H). The Lie algebras can be identified withso(3) and withR3, where
the Lie bracket is the cross-product of two vectors (the vector product).

There are natural actions of spheroids onHn and other interesting spaces. This will be
our main motivation for Section 3.

3. Tri-momentum maps and reduction

LetX be a 4m-manifold equipped with a tetraplectic structure given by a four-formsψ .
Let a spheroidΣn act onX preserving the formψ (by tetraplectomorphisms). The stabilizer
of a pointx ∈ X is not necessarily a spheroid. For example, if one considers the product
S2 ×R2, and the action ofΣ1 via SO(3) on the first factor, then there exists a volume form,
which is not changed by this action, and a stabilizer of a point is a circle. All our further
examples will be such that the stabilizer of are actually spheroids, and we will tacitly bear
in mind this assumption for the general discussion as well.

If Σ acts on(X,ψ) as above, then we have a canonical map

σ → Γ (X,TX)

sending an elementZ of σ to a vector fieldZ̃ onX. Then we also have the mapσ → A3(X)

given byZ �→ i
Z̃
ψ . If a three-form given byiYψ , whereY is a vector field onX, is closed,

then we callY a locally hamiltonian vector field. If, in addition,iYψ is exact, then we call
Y simply ahamiltonian vector field. Here, one can speculate that the groupH 3(X,R) can
be viewed as a certain topological obstruction.

Consider the four-vector fieldξ onX uniquely defined byiξψm = ψm−1. This four-vector
field defines a quaternary operation{·, ·, ·, ·}onC∞(X) in a standard fashion. If the Schouten
bracket ofξ with itself happens to vanish (which is the case for all our applications), then
we get a generalized Poisson algebra structure onC∞(X) in the terminology of [4]. In the
same source, as well as in [19], the authors consider triples of functionsf1,f2,f3 ∈ C∞(X)

and the corresponding hamiltonian vector fields given by

Yf1,f2,f3 = i(df1 ∧ df2 ∧ df3)ξ.

Then the corresponding evolution equation for anyg ∈ C∞(X) is given by

ġ = {f1, f2, f3, g}.
We say thatΣ acts onX in a (generalized) hamiltonian way if each of the generating

vector fields for the action is hamiltonian. The dual vector space to the Lie algebraσn
is isomorphic to the product ofn copies ofs∗. The action ofΣn on X induces a map
(∧3s)n → Γ (X,∧3TX) by taking the third exterior power of the the above morphism for
each componentΣ1 and adding these up.
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Definition 3.1. Let Σn act on(X,ψ) in a generalized hamiltonian way. A tri-momentum
mapµ is a map

µ : X → (∧3s∗)n 
 Rn

satisfying the following conditions.

1. µ isΣn-invariant:µ(a · x) = µ(x), for a ∈ Σn.
2. For anyδ ∈ (∧3s)n we have

d(µ(x), δ) = iδ̃ψ,

wherex ∈ X, andδ̃ is the tri-vector field onX induced byδ.
3. For anyx ∈ X, such thatµ(x) is regular, KerTxµ = (∧3σ · x)⊥ with respect toψx .

Notice that the first statement in the above definition is equivalent to saying thatµ is
Σn-equivariant, because the co-adjoint action ofΣ1 on s∗ induces the trivial action ofΣ1

on∧3s∗.
We will always identify(∧3s∗)n with Rn unless it leads to confusion. The following is

an example of a tri-momentum map. Other examples will be treated later on.
Example.Let X = (Hn, ψ) as in Section 2 with the standard spheroid action. The

tri-momentum mapHn → R
n is given by

(q1, . . . , qn) → (|q1|4, . . . , |qn|4).
The level sets for this tri-momentum map are isomorphic to the products of three-spheres.

Example.Let us takeX = H2 and the diagonal action ofa ∈ Σ1 on (q1, q2) ∈ H2 given
by (a ·q1, a ·q2). Then the tri-momentum mapH2 → R is given by(q1, q2) → |q1|4+|q2|4.
The regular level sets for this tri-momentum map are isomorphic to seven-spheres.

Now we would like to define the procedure of reduction in the general setup of tri-
momentum maps. Letxxx = (x1, . . . , xn) ∈ Rn be a regular point of a tri-momentum map
µ : (X,ψ) → R

n as above. The level setZxxx := µ−1(xxx) is smooth andΣn-invariant. The
stabilizers of the points inZxxx ⊂ X form a group bundle over it, which we assume to be
smooth. Then the reduced spaceYxxx := Zxxx/Σ

n is well defined and is a smooth manifold.
Let us also assume thatψ is horizontal on Zxxx , meaning that for anyβ ∈ σn, and the
corresponding vector field̃β onZxxx , one hasiβ̃ψ|Zxxx = 0 (one can easily see that a priori,
the four-forms on the level sets need not necessarily be horizontal). By methods similar to
those used for the symplectic reduction [26], we prove the following.

Theorem 3.1. Letxxx ∈ Rn be a regular value of a tri-momentum mapµ : X → R
n. Assume

that the stabilizers of all points inZxxx form a smooth spheroid bundle overZxxx , and thatψ it
is horizontal onZxxx . Then the reduced spaceYxxx = X//Σn corresponding toxxx is a smooth
manifold admitting a tetraplectic structureψxxx , which is reduced fromψ .

Proof. The tetraplectic structureψ onX induces a totally anti-symmetric four-linear form
on each of the spacesTzZxxx/Tz('.z). This form is well defined due to the invariance and
horizontality of the formψ . Therefore, we have a global four formψxxx on the reduced space
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Yxxx . Now let us show that for anyy ∈ Yxxx , the induced mapTyYxxx → ∧3T ∗
y Yxxx has trivial

kernel. It is enough to work with the case ofn = 1, i.e. theSp(1)-action. Since the actions
of different summands commute, and are hamiltonian, the reduction can be performed
one step at a time. In this case, one can choose a non-zero element in∧3s, which would
define a Bott–Morse functionf (z) on the manifoldX satisfying df = α, whereα is the
one-form, obtained by contracting the generating tri-vector field onX for theΣ1 action
with ψ . According to our definition,α is the generating one-form for the codimension one
foliation determined byf (which is regular, locally near the regular level sets). Therefore,
we can represent the volume formψm as the product df ∧ β ∧Ω, whereβ is an invariant
three-form, which pairs non-trivially with the fundamental three-vector field, andΩ is an
invariant (4m − 4)-form, which reduces toYxxx and is the highest exterior power of the
tetraplectic formψxxx . �

Example.We leave the majority of examples for the subsequent sections, and consider
only the two examples that we had earlier in this section.

In the first example, whenX = Hn with the standard tetraplectic formψ and the standard
Σn action, the reduced spaces are just points.

In a slight modification of our second example, letX = H2 with the standard diagonal
Σ1 action, and let the four-formsψ be given by

ψ = d(|q1|4 − |q2|4) ∧ d(α1 − α2) ∧ d(β1 − β2) ∧ d(γ1 − γ2),

where(q1, q2) ∈ H2, andqi has the absolute value|qi | and the spherical part(αi, βi, γi).
The reduced space in this example is isomorphic toHP1 
 S4, and topologically we have
the Hopf fibrationS3 → S7 → S4. The reduced tetraplectic structure onHP1 is just
the invariant volume form discussed in Section 2. Similarly, one can obtain an invariant
tetraplectic structure onHPn for an arbitraryn.

We would like to reiterate that the reduction procedure described above is different from
the Hyper–Kähler reduction [18]and quaternionic reduction [14]. The group that acts in our
situation isSp(1)n and the target for the momentum map involves third exterior powers of
the Lie algebra summands. Whereas, for example in [14], the groups maybe different, but
the momentum mapping is bundle valued.

We remark that one can obtain focal sets FocHP
nCP

n (critical sets for of the normal
exponential map with respect to the totally geodesic submanifoldCP

n ⊂ HPn) as zero level
sets of a particular momentum map as in Ornea and Piccinni [27]. It would be interesting to
see if one can obtain new examples of Sasakian–Einstein structures using our tri-momentum
maps.

4. Quaternionic flag manifolds

In this section, we show that the classical constructions of (full and partial) complex flag
manifolds can be used to construct quaternionic flag manifolds using the reduction procedure
that we discussed in Section 3. Moreover, we show that the reductions of these spaces possess
natural invariant tetraplectic structures. LetG = GL(n,H) andB be the subgroup of upper
triangular matrices. One has a natural identification between the full flag manifoldFn :=
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Sp(n)/Σn andG/B similar to the complex case. We also consider the partial flag manifolds
Fi1,...,ij := Sp(n)/(Sp(i1) × · · · × Sp(ij )), wheren = i1 + · · · + ij , where for example,
we have the quaternionic grassmannians Gr(p, n − p) = Sp(n)/(Sp(p) × Sp(n − p))

appearing as conjugacy classes in the classical compact groupSp(n). They are the orbits
of the elements diag(1, . . .1︸ ︷︷ ︸

p

,−1, . . . ,−1︸ ︷︷ ︸
n−p

), whenSp(n) is considered as a matrix subgroup

of G. The advantage of our approach is that although the lack of determinants over skew
fields does not allow one to use the Plücker determinants for the quaternionic flags, the
tri-momentums maps still exist and have certain nice properties which we will exhibit.

Let us consider the spaceHn of quaternionicn × n hermitian matrices, defined as a
subspace ofn×n quaternionic matricesgln(H) by the conditionA = A∗, whereA∗ stands
for the transposed quaternionic conjugate matrix. The groupSp(n) acts by conjugation on
Hn and the orbits of the action are isomorphic to quaternionic flag manifolds.

The cell decomposition enumerated by the Schubert symbols works overH as well as it
does overC [8]. One can also use an identification ofHn with R4n and embed quaternionic
flag manifolds into the real ones in order to construct a non-degenerate Morse function on
Fi1,...,ij , essentially done in [28].

A very interesting question related to the spaceHn was discussed by Fulton [13]. It turns
out that the equationA1 + · · · + An = C, where the matrices have prescribed spectra, has
a solution in quaternionic hermitian matrices if and only if it has a solution in complex
hermitian matrices.

First of all, we notice that the grassmannian Gr(p, n − p) can be realized as follows.
Consider the spaceHnp of n × p matrices with quaternionic entries, and let the subspace
V ⊂ Hnp consist of those matrices whose rows are orthonormal with respect to the standard
pairing:

〈ξ, η〉 =
n∑

i=1

ξi η̄i ,

where the bar stands for the quaternionic conjugation. The groupSp(p) acts on such bases
preservingV , on which it acts freely. The quotient space is isomorphic to the quaternionic
grassmannian Gr(p, n − p). We claim that there exists a tetraplectic formψ onHnp, that
can be pulled back toV . The resulting four-forms onV will be preserved by the action
of Sp(p) and horizontal, and thus, will descend to the quotient, Gr(p, n − p). This would
endow the irreducible symmetric space Gr(p, n − p) with a tetraplectic structure.

More generally, we can extend the construction of Guillemin and Sternberg [16] for the
complex flags. Since the full flag projects to all partial flags, and this projection behaves
well with the respect to the group action, a tetraplectic structure on the full flag manifold,
Fn, would push down to the partial flags.

Let K = Sp(n) and letΣn be its maximal spheroid as defined in Section 2. We have a
principal fibrationK → Fn with fiberΣn. We need the following projection map:

µ2 : K × Rn → R
n,

k × x �→ x.
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Here, we identified for convenienceRn with (∧3s∗)n (see Section 3). The mapµ2 is the
projection to the second factor, where we useσn = s⊕ · · · ⊕ s︸ ︷︷ ︸

n

to take third exterior powers

of individual summands. The principal bundleK → Fn admits an invariant bundle-valued
three form,δ, from which we obtain a pre-tetraplectic four-forms:

ψ1 = d〈δ, µ2〉
onK × Rn (cf. minimal coupling [32]).

Following the strategy of [16] we can show that the formψ1 is actually tetraplectic,
when we restrict to the proper subspaceRn0 of Rn (using the above identification we can
actually letRn0 = (R+)n). We call this restrictionψ . Now the mapµ2 which we callµ
after restricting it toK × Rn0, has all the properties of a tri-momentum map from Section
3. For a genericξ ∈ (R+)n ⊂ Rn, it is clear thatΣn stabilizesξ . Therefore, we obtain the
following result.

Proposition 4.1. The action ofΣn onK×Rn0, whereΣn acts trivially on the second factor,
has the tri-momentum mapµ. The reduced space is isomorphic toFn, the full quaternionic
flag manifold. The reduced tetraplectic form onFn so obtained isK-invariant.

Let us outline the relationship of the four-formsψ on the quaternionic flag manifolds that
we have obtained with invariant symplectic structures on otherK-homogeneous spaces. Let
T be a maximal torus inK contained inΣn and letTi 
 S1 be a maximal torus in theith
component ofΣn, so thatT = T1 × · · · × Tn. We have the following fibration:

n∏
i=1

(
Σ1

Ti

)
→ Sp(n)

T
→ Fn.

Each factorΣ1/Ti is isomorphic toCP1 and carries anΣ1-invariant symplectic formωi ,
while the spaceSp(n)/T is the classical flag manifold isomorphic toSp(n,C) modulo its
Borel subgroup, and thus, carries aK-invariant symplectic formω (actually, this form can
be obtained, once one identifiesK/T with a co-adjoint orbit and uses the Kirillov–Kostant–
Souriau (KKS) structure on the later). Trivially, by choosing a fiber, we can assume that all
theωi are the pull-backs of the formω. The spectral sequence for this fiber bundle clearly
shows that, cohomologically, one can choose such aK-invariant tetraplectic structureψ
on Fn that it will correspond to the cohomology class ofω ∧ ω. Moreover, due to the
K-invariance of the aforementioned, this correspondence can be traced on the level of
forms.

At this point, we would like to construct canonical four-forms on all the orbits ofSp(n)
action onHn. These orbits, as we mentioned earlier, are isomorphic to quaternionic flag
manifolds. These forms have similar origins and properties to the KKS symplectic forms
on the coadjoint orbits of the groupU(n). First of all, let us define a four-commutator of
square matrices:

[A1, A2, A3, A4] =
∑
τ∈S4

sign(τ )Aτ(1)Aτ(2)Aτ(3)Aτ(4).
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This four-commutator has the following property with respect to the usual commutator:∑
1≤i<j≤5

(−1)i+j [[Ai,Aj ], A1, . . . , Âi , . . . , Âj , . . . , A5] = 0. (4.1)

We also notice that the four-commutator of four quaternionic hermitian matrices is again
such, so we have an operationH⊗4

n → Hn. Let us also recall the non-degenerate pairing
Hn × Hn → R given by the real part of the trace of the product:(A,B) → Re Tr(AB).
This pairing is invariant with respect toK = Sp(n) action. This allows us to identify the
tangent and co-tangent space to any elementy ∈ Hn with Hn. The four-vector fieldκ
onHn, defined via the above four-vector field is parallel to the orbits. The corresponding
four-formsψ on an orbitO, whose value aty ∈ O ⊂ Hn is given by

ψy(A1, A2, A3, A4) = Re Tr(y[A1, A2, A3, A4])

has the following properties.

Proposition 4.2. The four-formsψ is non-degenerate, closed, and Sp(n)-invariant.

Proof. The invariance is a direct consequence of the fact that the real part of the trace
of the product of two quaternionic matrices is conjugation invariant. Non-degeneracy is
easy to check at one point of the orbit, namely, the diagonal matrix. Then one can use
the invariance to show non-degeneracy on the whole orbit. To show thatψ is closed, we
will follow discussion on p. 229 of [20]. We will identify the orbitO with K/L, whereL
stabilizesy, and use the fact thatK-invariant four-forms onK/L correspond uniquely to
L-invariant elements in∧4(l⊥), where the differential is given by the formula:

dφ(X1, . . . , X5) = 1

5

∑
i<j

(−1)i+j+1φ([Xi,Xj ], . . . , X̂i , . . . , X̂j , . . . ).

Therefore, the closedness immediately follows from our formula (4.1). �

Thus, we have shown that the quaternionic flag manifolds, which appear asSp(n) orbits
inHn, are naturally tetraplectic.1

Now we will discuss some general properties of the momentum polytopes and we will
see how the classical polytopes for the Hamiltonian torus actions on complex flag manifolds
fit into the quaternionic picture. The groupH = (H∗)n acts onHn and this action induces,
in turn, an action ofH on the spaces such asFn and Gr(p, n − p). The maximal spheroid
Σn is always thought of as the maximal compact subgroup ofH .

Recall the Dieudonné determinant [6]:

D : GL(n,H) → R+,

which is defined using the transformation of a matrix to an upper-triangular form.
For example, whenn = 1, D(q) = |q|, the usual norm. For anyA ∈ GL(n,H) of

1 I was informed that Reyer Sjamaar and Yi Lin have a different construction of tetraplectic four-forms on
quaternionic flag manifolds, using natural Lie algebra valued differential forms and tautological vector bundles.
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the form:(
q1 H

0 B

)
,

whereH is any row vector of length(n − 1), andB is an(n − 1) × (n − 1) matrix from
GL(n − 1,H), the Dieudonné determinant ofA is given by

D(A) = |q1| · D(B).

Among the properties of the Dieudonné determinant are many of the usual proper-
ties of the determinant in the groupGL(n) over a commutative field. We will use the
Dieudonné determinantD to construct a tri-momentum map for the quaternionic grass-
mannians Gr(p, n − p).

First of all, it is well known that the combinatorics of the (partial) flag manifolds in the
quaternionic case is the same as in the complex case. Moreover, the cohomology rings are
isomorphic (with the appropriate change in grading), and the Shubert calculus works the
same.

Let us first treat the case of the quaternionic grassmannianX = Gr(p, n−p). We choose a
K-invariant tetraplectic four-formsψ onX, which is really only defined up to multiplication
by a scalar. The spheroidΣn acts onX in a tetraplectomorphic way preservingψ . We claim
that the image of the tri-momentum map is the same as in the complex case, i.e. can be
identified with the polytopeZn

p in Rn defined by

Zn
p := {0 ≤ xi ≤ 1, x1 + · · · + xn = p},

where(x1, . . . , xn) are the coordinates inRn. One of the ways of looking at the coordinates
x1, . . . , xn is that of viewing them as the hamiltonians for the actions of the summands
of Σn, and we claim that the three-vector fieldδi , determined by theith summand in
Σn = ⊕n

i=1Σ
1, satisfies dxi = iδiψ .

Now the construction of the coordinate functionxi on Gr(p, n−p) is not really different
from the complex case. Any quaternioncp-planeΠ inHn can be viewed as ann×p matrix
MΠ of rankp with quaternionic entries. Following [15], letJ be a subset of{1, . . . , n} of
cardinalityp. ByMΠ(J )we understand thep×p matrix with quaternionic entries obtained
from M by keeping only those rows that are numbered by the elements ofJ . We further
define:

xi(Π) =
∑

i∈J D4(MΠ(J ))∑
J D

4(MΠ(J ))
.

We note that these Dieudonné determinants and their properties are of a crucial use in the
quaternionic case.

Proposition 4.3. The coordinates{xi} give a tri-momentum map

µ : Gr(p, n − p) → R
n.

The image of this map is the convex polytopeZn
p ⊂ Rn. The vertices of the polytopeZn

p are
the points inGr(p, n− p) fixed under theΣn-action. IfΠ is a point inGr(p, n− p), then
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the image of the closure of the orbitµ(Σ.Π) is the convex hull of the images of the fixed
points inΣ.Π .

Proof. The main idea is to choose an identification between Gr(p, n − p) and an orbit
of Sp(n) in Hn, say of the element diag(0, . . . ,0︸ ︷︷ ︸

n−p

, 1, . . . ,1︸ ︷︷ ︸
p

). For example,HP1 can be

identified with an orbit ofSp(2) of diag(0,1). The element of this orbit of the form(
s1 s2

s3 s4

)
·
(

0 0

0 1

)
·
(
s1 s2

s3 s4

)−1

=
(

|s2|2 s2s̄4

s4s̄2 |s4|2
)
,

where the first matrix is fromSp(2), and the second fromH2, corresponds to [s2 : s4]
∈ HP1. On the other hand, a pointHP1 can be represented as a line inH2 passing through a
point (q1, q2). There are certain formulas relatingq1, q2 with s1, s3, which can be obtained
by a straightforward computation. Analogous considerations are valid for all Gr(p, n −
p). One the orbit side, the momentum map will simply be given by the projection to the
diagonal. �

Similarly, one can obtain statements about full and all partial quaternionic flag manifolds
that are analogous to the complex case.

5. Related developments

In this section, we will merely outline the content of two subsequent papers [12] and [11].
In [12], we show several important generalizations of the classical results from symplectic
geometry to the case of tetraplectic geometry. The first is the convexity theorem founded in
[1] and [17]. Basically, we establish the following fact. Let(X,ψ) be a tetraplectic manifold
and letΣn act onX in a tetraplectomorphic way. Let(f1, . . . , fn) be such functions on
X that the flow corresponding to the generalized hamiltonian three-vector fieldsδ1, . . . , δn
(defined byiδj ψ = dfj ) generated a subgroup of Diff(X) defined byΣn. Then the image
of the mapµ : X → R

n given by

µ(xxx) = (f1(xxx), . . . , fn(xxx))

is the convex hull of the images of connected components of the set of common critical
points offi .

Another direction that we pursued [12] is a generalization of the Duistermaat–Heckman
theorems [7]. For the case of quaternionic flag manifolds and certain other compact mani-
folds with(H∗)n action, this formula would help to recover the structure of the cohomology
ring of the reduced spaces from the combinatorics of the fixed point data combined with
a generalization of Duistermaat–Heckman by methods similar to Guillemin and Sternberg
[16].

In [11], we work with generalized Poisson structures (GPS) of rank 4 as defined by de
Ascárraga et al. [4]. We show that many familiar manifolds have natural GPS. In particular,
we show that the full quaternionic flag manifoldsFn (as well as all the partial ones) have
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interesting natural GPS. In particular, we give a Lie theoretic construction of the Bruhat
four-vector field onFn, which is an example of GPS. Recall that the classical Bruhat Poisson
structures on complex flag manifolds that were first introduced by Soibelman [30] and inde-
pendently by Lu and Weinstein [24]. One of their main properties is that that the symplectic
leaf decomposition yields exactly the Bruhat cells. Moreover, Evens and Lu [9] showed that
the Kostant harmonic forms [22] have Poisson harmonic nature with respect to the Bruhat
Poisson structure. It would be interesting to find a basis in cohomology ofH •(Fn) dual
to the natural Bruhat cell decomposition for quaternionic flag manifoldsFn that is repre-
sented by forms with properties similar to Kostant harmonic forms. In particular, establish
a relationship with the Bruhat four-vector field of [11]. It would also appear quite natural to
consider the equivariant cohomology with the respect to the natural spheroid action onFn.

We also plan to study analogues of other interesting facts from the complex geometry,
which can be adapted to the quaternionic case. Examples include the Gelfand–MacPherson
correspondence between GIT and symplectic quotients of grassmannians and products
of projective spaces, the Gelfand–Tsetlin coordinates on the space of hermitian matrices,
moduli spaces of quaternionic vector bundles, and others.

5.1. Manifolds with(H∗)n-action

One could be tempted to use the theory of the toric manifolds to study the manifolds with
an(H∗)n action with a dense open orbit. In particular, one can start with a convex polytope
in Rn and try to construct a 4n-dimensional manifold with an(H∗)n action that has a dense
open orbit such that the tri-momentum map for the correspondingΣn-action is that convex
polytope. We do not know if this is possible in general except the simplest situation, when
the polytope is the standard simplex inRn. In this case, the corresponding manifold isHPn.
A naive application of the usual reduction method of constructing such manifolds fails in
general due to the non-commutative nature ofΣ1. However, there are examples of classes of
manifolds on which(H∗)n acts with a dense open orbit and we believe that one can classify
those by methods similar to [3] and [5]. Scott [31] develops a theory of quaternionic toric
manifolds, using topological methods. In general, only a single copy ofSp(1) acts on those.
If we only assume thatH∗ acts on a manifoldX, then in certain cases one can obtain a cell
decomposition ofX similar to the Bialynicki–Birula decomposition in the complex case.
Examples of such spaces are given by the quaternionic flag manifolds.
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